
EE653 Power distribution system 
modeling, optimization and 

simulation 
Dr. Zhaoyu Wang

1113 Coover Hall, Ames, IA
wzy@iastate.edu

ECpE Department



2

Modeling Shunt Components –
Loads and Caps

Acknowledgement: The slides are developed based in part 
on Distribution System Modeling and Analysis, 4th edition, 

William H. Kersting, CRC Press, 2017 



Load Models
The loads on a distribution system are typically specified by the complex power 
consumed. This demand can be specified as kVA and power factor, kW and power 
factor, or kW and kvar. The voltage specified will always be the voltage at the low-
voltage bus of the distribution substation. This creates a problem since the current 
requirement of the loads can not be determined without knowing the voltage. For this 
reason, modified ladder iterative technique must be employed.

Loads on a distribution feeder can be modeled as wye connected or delta connected. 
The loads can be three phase, two phase, or single phase with any degree of 
unbalanced. The ZIP models are
• Constant impedance (Z)
• Constant current (I)
• Constant real and reactive power (constant P)
• Any combination of the above
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Load Models
• The load models developed are to be used in the iterative process of a power-

flow program where the load voltages are initially assumed. 
• One of the results of the power-flow analysis is to replace the assumed 

voltages with the actual operating load voltages. 
• All models are initially defined by a complex power per phase and an assumed 

line-to-neutral voltage (wye load) or an assumed line-to-line voltage (delta 
load). The units of the complex power can be in volt-amperes and volts or per-
unit volt-amperes and per-unit voltages. 

• For all loads, the line currents entering the load are required in order to 
perform the power-flow analysis.

• Actually, for all shunt components, including static loads, caps and induction 
machines, what we need is the line currents entering the shunt components. 
These line currents will be used in the forward-backward sweep method. The 
approaches to calculate these line currents depend on the components and on 
wye/delta connections.
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Wye-Connected Loads
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Fig.1 shows the model of a wye-connected load.

Fig.1 Wye-connected load  
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Wye-Connected Loads
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The notation for the specified complex powers and voltages are as follows:

Phase a:

Fig.1 Wye-connected load  

𝑆𝑆𝑎𝑎 ∠𝜃𝜃𝑎𝑎 = 𝑃𝑃𝑎𝑎 + j𝑄𝑄𝑎𝑎 and 𝑉𝑉𝑎𝑎𝑛𝑛 ∠𝛿𝛿𝑎𝑎 (1)

Phase b:

Phase c:

𝑆𝑆𝑏𝑏 ∠𝜃𝜃𝑏𝑏 = 𝑃𝑃𝑏𝑏 + j𝑄𝑄𝑏𝑏 and 𝑉𝑉𝑏𝑏𝑛𝑛 ∠𝛿𝛿𝑏𝑏 (2)

𝑆𝑆𝑐𝑐 ∠𝜃𝜃𝑐𝑐 = 𝑃𝑃𝑐𝑐 + j𝑄𝑄𝑐𝑐 and 𝑉𝑉𝑐𝑐𝑛𝑛 ∠𝛿𝛿𝑐𝑐 (3)
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Constant Real and Reactive Power Loads
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The line currents for constant real and reactive power loads (PQ loads) are given by

𝐼𝐼𝐼𝐼𝑎𝑎 =
𝑆𝑆𝑎𝑎
𝑉𝑉𝑎𝑎𝑛𝑛

∗

=
𝑆𝑆𝑎𝑎
𝑉𝑉𝑎𝑎𝑛𝑛

∠𝛿𝛿𝑎𝑎 − 𝜃𝜃𝑎𝑎 = 𝐼𝐼𝐼𝐼𝑎𝑎 ∠𝛿𝛿𝑎𝑎

(4)𝐼𝐼𝐼𝐼𝑏𝑏 =
𝑆𝑆𝑏𝑏
𝑉𝑉𝑏𝑏𝑛𝑛

∗

=
𝑆𝑆𝑏𝑏
𝑉𝑉𝑏𝑏𝑛𝑛

∠𝛿𝛿𝑏𝑏 − 𝜃𝜃𝑏𝑏 = 𝐼𝐼𝐼𝐼𝑏𝑏 ∠𝛿𝛿𝑏𝑏

𝐼𝐼𝐼𝐼𝑐𝑐 =
𝑆𝑆𝑐𝑐
𝑉𝑉𝑐𝑐𝑛𝑛

∗

=
𝑆𝑆𝑐𝑐
𝑉𝑉𝑐𝑐𝑛𝑛

∠𝛿𝛿𝑐𝑐 − 𝜃𝜃𝑐𝑐 = 𝐼𝐼𝐼𝐼𝑐𝑐 ∠𝛿𝛿𝑐𝑐

In this model, the line-to-neutral voltages will change during each iteration until 
convergence is achieved.
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Constant Impedance Loads
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The “constant load impedance” is first determined from the specified complex power and 
assumed (e.g., nominal voltage) line-to-neutral voltages:

𝑍𝑍𝑎𝑎 =
𝑉𝑉𝑎𝑎𝑛𝑛 2

𝑆𝑆𝑎𝑎∗
=

𝑉𝑉𝑎𝑎𝑛𝑛 2

𝑆𝑆𝑎𝑎
∠𝜃𝜃𝑎𝑎 = 𝑍𝑍𝑎𝑎 ∠𝜃𝜃𝑎𝑎

(5)

The load currents as a function of the “constant load impedances” are given by

𝑍𝑍𝑏𝑏 =
𝑉𝑉𝑏𝑏𝑛𝑛 2

𝑆𝑆𝑏𝑏∗
=

𝑉𝑉𝑏𝑏𝑛𝑛 2

𝑆𝑆𝑏𝑏
∠𝜃𝜃𝑏𝑏 = 𝑍𝑍𝑏𝑏 ∠𝜃𝜃𝑏𝑏

𝑍𝑍𝑐𝑐 =
𝑉𝑉𝑐𝑐𝑛𝑛 2

𝑆𝑆𝑐𝑐∗
=

𝑉𝑉𝑐𝑐𝑛𝑛 2

𝑆𝑆𝑐𝑐
∠𝜃𝜃𝑐𝑐 = 𝑍𝑍𝑐𝑐 ∠𝜃𝜃𝑐𝑐

𝐼𝐼𝐼𝐼𝑎𝑎 =
𝑉𝑉𝑎𝑎𝑛𝑛
𝑍𝑍𝑎𝑎

=
𝑉𝑉𝑎𝑎𝑛𝑛
𝑍𝑍𝑎𝑎

∠𝛿𝛿𝑎𝑎 − 𝜃𝜃𝑎𝑎 = 𝐼𝐼𝐼𝐼𝑎𝑎 ∠𝛼𝛼𝑎𝑎

(6)𝐼𝐼𝐼𝐼𝑏𝑏 =
𝑉𝑉𝑏𝑏𝑛𝑛
𝑍𝑍𝑏𝑏

=
𝑉𝑉𝑏𝑏𝑛𝑛
𝑍𝑍𝑏𝑏

∠𝛿𝛿𝑏𝑏 − 𝜃𝜃𝑏𝑏 = 𝐼𝐼𝐼𝐼𝑏𝑏 ∠𝛼𝛼𝑏𝑏

𝐼𝐼𝐼𝐼𝑐𝑐 =
𝑉𝑉𝑐𝑐𝑛𝑛
𝑍𝑍𝑐𝑐

=
𝑉𝑉𝑐𝑐𝑛𝑛
𝑍𝑍𝑐𝑐

∠𝛿𝛿𝑐𝑐 − 𝜃𝜃𝑐𝑐 = 𝐼𝐼𝐼𝐼𝑐𝑐 ∠𝛼𝛼𝑐𝑐
In this model, the line-to-neutral voltages will change during each iteration, but the impedance 
computed in Equation (5) will remain constant.
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Constant Current Loads
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𝐼𝐼𝐼𝐼𝑎𝑎 = 𝐼𝐼𝐼𝐼𝑎𝑎 ∠𝛿𝛿𝑎𝑎 − 𝜃𝜃𝑎𝑎
(7)

where
δabc represents the line-to-neutral voltage angles
θabc represents the power factor angles

In this model, the magnitudes of the currents are computed according to Equations (4) and 
then held constant while the angle of the voltage (δ) changes resulting in a changing angle on 
the current so that the power factor of the load remains constant:

𝐼𝐼𝐼𝐼𝑎𝑎 =
𝑆𝑆𝑎𝑎
𝑉𝑉𝑎𝑎𝑛𝑛

∗

=
𝑆𝑆𝑎𝑎
𝑉𝑉𝑎𝑎𝑛𝑛

∠𝛿𝛿𝑎𝑎 − 𝜃𝜃𝑎𝑎 = 𝐼𝐼𝐼𝐼𝑎𝑎 ∠𝛿𝛿𝑎𝑎

(4)𝐼𝐼𝐼𝐼𝑏𝑏 =
𝑆𝑆𝑏𝑏
𝑉𝑉𝑏𝑏𝑛𝑛

∗

=
𝑆𝑆𝑏𝑏
𝑉𝑉𝑏𝑏𝑛𝑛

∠𝛿𝛿𝑏𝑏 − 𝜃𝜃𝑏𝑏 = 𝐼𝐼𝐼𝐼𝑏𝑏 ∠𝛿𝛿𝑏𝑏

𝐼𝐼𝐼𝐼𝑐𝑐 =
𝑆𝑆𝑐𝑐
𝑉𝑉𝑐𝑐𝑛𝑛

∗

=
𝑆𝑆𝑐𝑐
𝑉𝑉𝑐𝑐𝑛𝑛

∠𝛿𝛿𝑐𝑐 − 𝜃𝜃𝑐𝑐 = 𝐼𝐼𝐼𝐼𝑐𝑐 ∠𝛿𝛿𝑐𝑐

𝐼𝐼𝐼𝐼𝑏𝑏 = 𝐼𝐼𝐼𝐼𝑏𝑏 ∠𝛿𝛿𝑏𝑏 − 𝜃𝜃𝑏𝑏
𝐼𝐼𝐼𝐼𝑐𝑐 = 𝐼𝐼𝐼𝐼𝑐𝑐 ∠𝛿𝛿𝑐𝑐 − 𝜃𝜃𝑐𝑐
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Combination Loads
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Combination loads can be modeled by assigning a percentage 
of the total load to each of the three aforementioned load 
models. The total line current entering the load is the sum of 
the three components.
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Example 1
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The complex powers of a wye-connected load are

𝑆𝑆𝑎𝑎𝑏𝑏𝑐𝑐 =
2236.1∠26.6
2506.0∠28.6
2101.4∠25.3

 𝑘𝑘𝑉𝑉𝑘𝑘

The load is specified to be 50% constant complex power, 20% constant impedance, and 30% 
constant current. The nominal line-to-line voltage of the feeder is 12.47 kV.
A. Assume the nominal voltage and compute the component of load current attributed to each 
component of the load and the total load current. The assumed line-to-neutral voltages at the 
start of the iterative routine are

𝑉𝑉𝐼𝐼𝑉𝑉𝑎𝑎𝑏𝑏𝑐𝑐 =
7200∠0

7200∠ − 120
7200∠120

𝑉𝑉

The component of currents due to the constant complex power is

𝐼𝐼𝑝𝑝𝑝𝑝𝑖𝑖 =
𝑆𝑆𝑖𝑖 � 1000
𝑉𝑉𝐼𝐼𝑉𝑉𝑖𝑖

∗

� 0.5 =
155.3∠ − 26.6

174.0∠ − 148.6
146.0∠94.7

 𝑘𝑘
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Example 1

12

𝑍𝑍𝑖𝑖 =
𝑉𝑉𝐼𝐼𝑉𝑉𝑖𝑖2

𝑆𝑆𝑖𝑖∗ � 1000
� 0.5 =

20.7 + 𝑗𝑗𝑗𝑗.4
18.2 + 𝑗𝑗9.9

22.3 + 𝑗𝑗𝑗𝑗.6
 Ω

The constant impedances for that part of the load are computed as

For the first iteration, the currents due to the constant impedance portion of the load 
are

𝐼𝐼𝑧𝑧𝑖𝑖 =
𝑉𝑉𝐼𝐼𝑉𝑉𝑖𝑖
𝑍𝑍𝑖𝑖

� 0.2 =
62.1∠ − 26.6

69.6∠ − 148.6
58.4∠94.7

 𝑘𝑘

The magnitudes of the constant current portion of the load are

𝐼𝐼𝑀𝑀𝑖𝑖 =
𝑆𝑆𝑖𝑖 � 1000
𝑉𝑉𝐼𝐼𝑉𝑉𝑖𝑖

∗

� 0.3 =
93.2

104.4
87.6

 𝑘𝑘
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Example 1
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𝐼𝐼𝐼𝐼𝑖𝑖 = 𝐼𝐼𝑀𝑀𝑖𝑖∠𝛿𝛿𝑖𝑖 − 𝜃𝜃𝑖𝑖 =
93.2∠ − 26.6

104.4∠ − 148.6
87.6∠94.7

 𝑘𝑘

The contribution of the load currents due to the constant current portion of the load is

The total load current is the sum of the three components:

𝐼𝐼𝑎𝑎𝑏𝑏𝑐𝑐 = 𝐼𝐼𝑝𝑝𝑝𝑝 + 𝐼𝐼𝑧𝑧 + 𝐼𝐼𝐼𝐼 =
310.6∠ − 26.6

348.1∠ − 148.6
292.0∠94.7

 𝑘𝑘

B. Determine the currents at the start of the second iteration. The voltages at the load after the 
first iteration are

𝑉𝑉𝐼𝐼𝑉𝑉 =
6850.0∠ − 1.9

6972.7∠ − 122.1
6886.1∠117.5

 𝑉𝑉

The steps are repeated with the exceptions that the impedances of the constant impedance 
portion of the load will not be changed and the magnitude of the currents for the constant 
current portion of the load change will not change.
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Example 1
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The constant complex power portion of the load currents is

𝐼𝐼𝑝𝑝𝑝𝑝𝑖𝑖 =
𝑆𝑆𝑖𝑖 � 1000
𝑉𝑉𝐼𝐼𝑉𝑉𝑖𝑖

∗

� 0.5 =
163.2∠ − 28.5

179.7∠ − 150.7
152.7∠92.1

 𝑘𝑘

The currents due to the constant impedance portion of the load are

𝐼𝐼𝑧𝑧𝑖𝑖 =
𝑉𝑉𝐼𝐼𝑉𝑉𝑖𝑖
𝑍𝑍𝑖𝑖

� 0.2 =
59.1∠ − 28.5

67.4∠ − 150.7
55.9∠92.1

 𝑘𝑘

The currents due to the constant current portion of the load are

𝐼𝐼𝐼𝐼𝑖𝑖 = 𝐼𝐼𝑀𝑀𝑖𝑖∠𝛿𝛿𝑖𝑖 − 𝜃𝜃𝑖𝑖 =
93.2∠ − 28.5

104.4∠ − 150.7
87.6∠92.1

 𝑘𝑘

The total load currents at the start of the second iteration will be

𝐼𝐼𝑎𝑎𝑏𝑏𝑐𝑐 = 𝐼𝐼𝑝𝑝𝑝𝑝 + 𝐼𝐼𝑧𝑧 + 𝐼𝐼𝐼𝐼 =
315.5∠ − 28.5

351.5∠ − 150.7
296.2∠92.1

 𝑘𝑘
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Observe how these currents have changed from the original 
currents. The currents for the constant complex power loads have 
increased because the voltages are reduced from the original 
assumption. The currents for the constant impedance portion of 
the load have decreased because the impedance stayed constant 
but the voltages are reduced. Finally, the constant current portion 
of the load has indeed remained constant. Again, all three 
components of the load have the same phase angles since the 
power factor of the load has not changed.
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Delta-Connected Loads
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The model for a delta-connected load is shown in Fig.2.
The notations for the specified complex powers and voltages in Fig.2 are as follows:

Phase ab: 𝑆𝑆𝑎𝑎𝑏𝑏 ∠𝜃𝜃𝑎𝑎𝑏𝑏 = 𝑃𝑃𝑎𝑎𝑏𝑏 + j𝑄𝑄𝑎𝑎𝑏𝑏 and 𝑉𝑉𝑎𝑎𝑏𝑏 ∠𝛿𝛿𝑎𝑎𝑏𝑏 (8)

Phase bc:

Phase ca:

𝑆𝑆𝑏𝑏𝑐𝑐 ∠𝜃𝜃𝑏𝑏𝑐𝑐 = 𝑃𝑃𝑏𝑏𝑐𝑐 + j𝑄𝑄𝑏𝑏𝑐𝑐 and 𝑉𝑉𝑏𝑏𝑐𝑐 ∠𝛿𝛿𝑏𝑏𝑐𝑐 (9)
𝑆𝑆𝑐𝑐𝑎𝑎 ∠𝜃𝜃𝑐𝑐𝑎𝑎 = 𝑃𝑃𝑐𝑐𝑎𝑎 + j𝑄𝑄𝑐𝑐𝑎𝑎 and 𝑉𝑉𝑐𝑐𝑎𝑎 ∠𝛿𝛿𝑐𝑐𝑎𝑎 (10)

Fig.2 Delta-connected load  
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Constant Real and Reactive Power Loads
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The currents in the delta-connected loads are

𝐼𝐼𝐼𝐼𝑎𝑎𝑏𝑏 =
𝑆𝑆𝑎𝑎𝑏𝑏
𝑉𝑉𝑎𝑎𝑏𝑏

∗

=
𝑆𝑆𝑎𝑎𝑏𝑏
𝑉𝑉𝑎𝑎𝑏𝑏

∠𝛿𝛿𝑎𝑎𝑏𝑏 − 𝜃𝜃𝑎𝑎𝑏𝑏 = 𝐼𝐼𝐼𝐼𝑎𝑎𝑏𝑏 ∠𝛼𝛼𝑎𝑎𝑏𝑏

(11)𝐼𝐼𝐼𝐼𝑏𝑏𝑐𝑐 =
𝑆𝑆𝑏𝑏𝑐𝑐
𝑉𝑉𝑏𝑏𝑐𝑐

∗

=
𝑆𝑆𝑏𝑏𝑐𝑐
𝑉𝑉𝑏𝑏𝑐𝑐

∠𝛿𝛿𝑏𝑏𝑐𝑐 − 𝜃𝜃𝑏𝑏𝑐𝑐 = 𝐼𝐼𝐼𝐼𝑏𝑏𝑐𝑐 ∠𝛼𝛼𝑏𝑏𝑐𝑐

𝐼𝐼𝐼𝐼𝑐𝑐𝑎𝑎 =
𝑆𝑆𝑐𝑐𝑎𝑎
𝑉𝑉𝑐𝑐𝑎𝑎

∗

=
𝑆𝑆𝑐𝑐𝑎𝑎
𝑉𝑉𝑐𝑐𝑎𝑎

∠𝛿𝛿𝑐𝑐𝑎𝑎 − 𝜃𝜃𝑐𝑐𝑎𝑎 = 𝐼𝐼𝐼𝐼𝑐𝑐𝑎𝑎 ∠𝛼𝛼𝑐𝑐𝑎𝑎

In this model, the line-to-line voltages will change during each iteration resulting in 
new current magnitudes and angles at the start of each iteration.
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Constant Impedance Loads
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𝑍𝑍𝑎𝑎𝑏𝑏 =
𝑉𝑉𝑎𝑎𝑏𝑏 2

𝑆𝑆𝑎𝑎𝑏𝑏∗
=

𝑉𝑉𝑎𝑎𝑏𝑏 2

𝑆𝑆𝑎𝑎𝑏𝑏
∠𝜃𝜃𝑎𝑎𝑏𝑏 = 𝑍𝑍𝑎𝑎𝑏𝑏 ∠𝜃𝜃𝑎𝑎𝑏𝑏

(12)
𝑍𝑍𝑏𝑏𝑐𝑐 =

𝑉𝑉𝑏𝑏𝑐𝑐 2

𝑆𝑆𝑏𝑏𝑐𝑐∗
=

𝑉𝑉𝑏𝑏𝑐𝑐 2

𝑆𝑆𝑏𝑏𝑐𝑐
∠𝜃𝜃𝑏𝑏𝑐𝑐 = 𝑍𝑍𝑏𝑏𝑐𝑐 ∠𝜃𝜃𝑏𝑏𝑐𝑐

𝑍𝑍𝑐𝑐𝑎𝑎 =
𝑉𝑉𝑐𝑐𝑎𝑎 2

𝑆𝑆𝑐𝑐𝑎𝑎∗
=

𝑉𝑉𝑐𝑐𝑎𝑎 2

𝑆𝑆𝑐𝑐𝑎𝑎
∠𝜃𝜃𝑐𝑐𝑎𝑎 = 𝑍𝑍𝑐𝑐𝑎𝑎 ∠𝜃𝜃𝑐𝑐𝑎𝑎

𝐼𝐼𝐼𝐼𝑎𝑎𝑏𝑏 =
𝑉𝑉𝑎𝑎𝑏𝑏
𝑍𝑍𝑎𝑎𝑏𝑏

=
𝑉𝑉𝑎𝑎𝑏𝑏
𝑍𝑍𝑎𝑎𝑏𝑏

∠𝛿𝛿𝑎𝑎𝑏𝑏 − 𝜃𝜃𝑎𝑎𝑏𝑏 = 𝐼𝐼𝐼𝐼𝑎𝑎𝑏𝑏 ∠𝛼𝛼𝑎𝑎𝑏𝑏

(13)
𝐼𝐼𝐼𝐼𝑏𝑏𝑐𝑐 =

𝑉𝑉𝑏𝑏𝑐𝑐
𝑍𝑍𝑏𝑏𝑐𝑐

=
𝑉𝑉𝑏𝑏𝑐𝑐
𝑍𝑍𝑏𝑏𝑐𝑐

∠𝛿𝛿𝑏𝑏𝑐𝑐 − 𝜃𝜃𝑏𝑏𝑐𝑐 = 𝐼𝐼𝐼𝐼𝑏𝑏𝑐𝑐 ∠𝛼𝛼𝑏𝑏𝑐𝑐

𝐼𝐼𝐼𝐼𝑐𝑐𝑎𝑎 =
𝑉𝑉𝑐𝑐𝑎𝑎
𝑍𝑍𝑐𝑐𝑎𝑎

=
𝑉𝑉𝑐𝑐𝑎𝑎
𝑍𝑍𝑐𝑐𝑎𝑎

∠𝛿𝛿𝑐𝑐𝑎𝑎 − 𝜃𝜃𝑐𝑐𝑎𝑎 = 𝐼𝐼𝐼𝐼𝑐𝑐𝑎𝑎 ∠𝛼𝛼𝑐𝑐𝑎𝑎

The “constant load impedance” is first determined from the specified complex power and line-
to-line voltages:

The delta load currents as a function of the “constant load impedances” are

In this model, the line-to-line voltages will change during each iteration until convergence 
is achieved.
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In this model, the magnitudes of the currents are computed according to Equations (11) and 
then held constant while the angle of the voltage (δ) changes during each iteration. This keeps 
the power factor of the load constant:

𝐼𝐼𝐼𝐼𝑎𝑎𝑏𝑏 =
𝑆𝑆𝑎𝑎𝑏𝑏
𝑉𝑉𝑎𝑎𝑏𝑏

∗

=
𝑆𝑆𝑎𝑎𝑏𝑏
𝑉𝑉𝑎𝑎𝑏𝑏

∠𝛿𝛿𝑎𝑎𝑏𝑏 − 𝜃𝜃𝑎𝑎𝑏𝑏 = 𝐼𝐼𝐼𝐼𝑎𝑎𝑏𝑏 ∠𝛼𝛼𝑎𝑎𝑏𝑏

(11)𝐼𝐼𝐼𝐼𝑏𝑏𝑐𝑐 =
𝑆𝑆𝑏𝑏𝑐𝑐
𝑉𝑉𝑏𝑏𝑐𝑐

∗

=
𝑆𝑆𝑏𝑏𝑐𝑐
𝑉𝑉𝑏𝑏𝑐𝑐

∠𝛿𝛿𝑏𝑏𝑐𝑐 − 𝜃𝜃𝑏𝑏𝑐𝑐 = 𝐼𝐼𝐼𝐼𝑏𝑏𝑐𝑐 ∠𝛼𝛼𝑏𝑏𝑐𝑐

𝐼𝐼𝐼𝐼𝑐𝑐𝑎𝑎 =
𝑆𝑆𝑐𝑐𝑎𝑎
𝑉𝑉𝑐𝑐𝑎𝑎

∗

=
𝑆𝑆𝑐𝑐𝑎𝑎
𝑉𝑉𝑐𝑐𝑎𝑎

∠𝛿𝛿𝑐𝑐𝑎𝑎 − 𝜃𝜃𝑐𝑐𝑎𝑎 = 𝐼𝐼𝐼𝐼𝑐𝑐𝑎𝑎 ∠𝛼𝛼𝑐𝑐𝑎𝑎

𝐼𝐼𝐼𝐼𝑎𝑎𝑏𝑏 = 𝐼𝐼𝐼𝐼𝑎𝑎𝑏𝑏 ∠𝛿𝛿𝑎𝑎𝑏𝑏 − 𝜃𝜃𝑎𝑎𝑏𝑏
(14)𝐼𝐼𝐼𝐼𝑏𝑏𝑐𝑐 = 𝐼𝐼𝐼𝐼𝑏𝑏𝑐𝑐 ∠𝛿𝛿𝑏𝑏𝑐𝑐 − 𝜃𝜃𝑏𝑏𝑐𝑐

𝐼𝐼𝐼𝐼𝑐𝑐𝑎𝑎 = 𝐼𝐼𝐼𝐼𝑐𝑐𝑎𝑎 ∠𝛿𝛿𝑐𝑐𝑎𝑎 − 𝜃𝜃𝑐𝑐𝑎𝑎
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Combination loads can be modeled by assigning a percentage of the total load to each of the 
three aforementioned load models. The total delta current for each load is the sum of the three 
components.

Line Currents Serving a Delta-Connected Loads
The line currents entering the delta-connected load are determined by applying Kirchhoff's 
current law (KCL) at each of the nodes of the delta. In matrix form, the equations are

𝐼𝐼𝐼𝐼𝑎𝑎
𝐼𝐼𝐼𝐼𝑏𝑏
𝐼𝐼𝐼𝐼𝑐𝑐

 =
1 0 −1
−1 1 0
0 −1 1

 �
𝐼𝐼𝐼𝐼𝑎𝑎𝑏𝑏
𝐼𝐼𝐼𝐼𝑏𝑏𝑐𝑐
𝐼𝐼𝐼𝐼𝑐𝑐𝑎𝑎

(15)

Two-Phase and Single-Phase Loads
In both the wye- and delta-connected loads, single-phase and two-phase loads are modeled by 
setting the currents of the missing phases to zero. The currents in the phases present are 
computed using the same appropriate equations for constant complex power, constant 
impedance, and constant current.
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Shunt capacitor banks are commonly used in distribution 
systems to help in voltage regulation and to provide reactive 
power support. The capacitor banks are modeled as constant 
susceptances connected in either wye or delta. Similar to the 
load model, all capacitor banks are modeled as three-phase 
banks with the currents of the missing phases set to zero for 
single-phase and two-phase banks.
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The model of a three-phase wye-connected shunt capacitor bank is shown in Fig.3.
The individual phase capacitor units are specified in kvar and kV. The constant 
susceptance for each unit can be computed in Siemens. The susceptance of a capacitor 
unit is computed by

𝐵𝐵𝑐𝑐 =
𝑘𝑘𝑘𝑘𝑘𝑘𝑘𝑘

𝑘𝑘𝑉𝑉𝐿𝐿𝐿𝐿2 � 1000
 𝑆𝑆 (16)
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23Fig.3 Wye-connected capacitor bank  

(17)

With the susceptance computed, the line currents serving the capacitor 
bank are given by 𝐼𝐼𝐼𝐼𝑎𝑎 = 𝑗𝑗𝐵𝐵𝑎𝑎 � 𝑉𝑉𝑎𝑎𝑛𝑛

𝐼𝐼𝐼𝐼𝑏𝑏 = 𝑗𝑗𝐵𝐵𝑏𝑏 � 𝑉𝑉𝑏𝑏𝑛𝑛
𝐼𝐼𝐼𝐼𝑐𝑐 = 𝑗𝑗𝐵𝐵𝑐𝑐 � 𝑉𝑉𝑐𝑐𝑛𝑛
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The model for a delta-connected shunt capacitor bank is shown in Fig.4.
The individual phase capacitor units are specified in kvar and kV. For the delta-connected 
capacitors, the kV must be the line-to-line voltage. The constant susceptance for each unit can 
be computed in Siemens. The susceptance of a capacitor unit is computed by

𝐵𝐵𝑐𝑐 =
𝑘𝑘𝑘𝑘𝑘𝑘𝑘𝑘

𝑘𝑘𝑉𝑉𝐿𝐿𝐿𝐿2 � 1000
 𝑆𝑆 (18)
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With the susceptance computed, the delta currents serving the capacitor bank are 
given by

(19)
𝐼𝐼𝐼𝐼𝑎𝑎𝑏𝑏 = 𝑗𝑗𝐵𝐵𝑎𝑎𝑏𝑏 � 𝑉𝑉𝑎𝑎𝑏𝑏
𝐼𝐼𝐼𝐼𝑏𝑏𝑐𝑐 = 𝑗𝑗𝐵𝐵𝑏𝑏𝑐𝑐 � 𝑉𝑉𝑏𝑏𝑐𝑐
𝐼𝐼𝐼𝐼𝑐𝑐𝑎𝑎 = 𝑗𝑗𝐵𝐵𝑐𝑐𝑎𝑎 � 𝑉𝑉𝑐𝑐𝑎𝑎

The line currents flowing into the delta-connected capacitors are computed by 
applying KCL at each node. In matrix form, the equations are

𝐼𝐼𝐼𝐼𝑎𝑎
𝐼𝐼𝐼𝐼𝑏𝑏
𝐼𝐼𝐼𝐼𝑐𝑐

 =
1 0 −1
−1 1 0
0 −1 1

 �
𝐼𝐼𝐼𝐼𝑎𝑎𝑏𝑏
𝐼𝐼𝐼𝐼𝑏𝑏𝑐𝑐
𝐼𝐼𝐼𝐼𝑐𝑐𝑎𝑎

(20)
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The analysis of an induction machine (motor or generator) when operating under 
unbalanced voltage conditions has traditionally been performed using the method of 
symmetrical components. Using this approach, the positive and negative sequence 
equivalent circuits of the machine are developed and then, given the sequence line-
to-neutral voltages, the sequence currents are computed. The zero sequence network 
is not required since the machines are typically connected delta or ungrounded wye, 
which means that there will not be any zero sequence currents or voltages. The 
phase currents are determined by performing the transformation back to the phase 
line currents. The internal operating conditions are determined by the complete 
analysis of the sequence networks.

A method whereby all of the analysis can be performed in the phase frame will be 
developed. The analysis will be broken into two parts. The first part will be to 
determine the terminal voltages and currents of the motor and the second part will be 
to use these values to compute the stator and rotor losses and the converted shaft 
power.
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27Fig.5 Sequence equivalent circuit 

The sequence line-to-neutral equivalent circuit of a three-phase induction machine is shown in 
Fig.5.
The circuit in Fig.5 applies to both the positive and negative sequence networks. The only 
difference between the two is the value of the “load resistance” RL as defined in the following:

𝑅𝑅𝐼𝐼𝑖𝑖 =
1 − 𝑠𝑠𝑖𝑖
𝑠𝑠𝑖𝑖

� 𝑅𝑅𝑘𝑘𝑖𝑖 (21)where
Positive sequence slip:

𝑠𝑠𝑖𝑖 =
𝑛𝑛𝑠𝑠 − 𝑛𝑛𝑟𝑟
𝑛𝑛𝑠𝑠 (22)where

• ns is the synchronous speed
• nr is the rotor speed
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𝑠𝑠2 = 2 − 𝑠𝑠1 (23)
Negative sequence slip:

Note that the negative sequence load resistance RL2 will be a negative value that will 
lead to a negative shaft power in the negative sequence.

If the value of positive sequence slip (s1) is known, the input sequence impedances for 
the positive and negative sequence networks can be determined as

𝑍𝑍𝑀𝑀𝑖𝑖 = 𝑅𝑅𝑠𝑠𝑖𝑖 + 𝑗𝑗𝑋𝑋𝑠𝑠𝑖𝑖 +
(𝑗𝑗𝑋𝑋𝑋𝑋𝑖𝑖)(𝑅𝑅𝑘𝑘𝑖𝑖 + 𝑅𝑅𝐼𝐼𝑖𝑖 + 𝑗𝑗𝑋𝑋𝑘𝑘𝑖𝑖)
𝑅𝑅𝑘𝑘𝑖𝑖 + 𝑅𝑅𝐼𝐼𝑖𝑖 + 𝑗𝑗(𝑋𝑋𝑋𝑋𝑖𝑖 + 𝑋𝑋𝑘𝑘𝑖𝑖) (24)

where
• i = 1 for positive sequence
• i = 2 for negative sequence
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Once the input sequence impedances have been determined, the analysis of an induction machine operating 
with unbalanced voltages requires the following steps:
Step 1: Transform the known line-to-line voltages to sequence line-to-line voltages:

𝑉𝑉𝑘𝑘𝑉𝑉0
𝑉𝑉𝑘𝑘𝑉𝑉1
𝑉𝑉𝑘𝑘𝑉𝑉2

 = 1
3
�

1 1 1
1 𝑘𝑘 𝑘𝑘2
1 𝑘𝑘2 𝑘𝑘

�
𝑉𝑉𝑎𝑎𝑏𝑏
𝑉𝑉𝑏𝑏𝑐𝑐
𝑉𝑉𝑐𝑐𝑎𝑎

(25)

In Equation (25), Vab0 = 0 because of Kirchhoff's voltage law (KVL).
Equation (25) can be written as

𝑉𝑉𝐼𝐼𝐼𝐼012  = 𝑘𝑘 −1 � 𝑉𝑉𝐼𝐼𝐼𝐼𝑎𝑎𝑏𝑏𝑐𝑐
(26)

Step 2: Compute the sequence line-to-neutral voltages from the line-to-line voltages:

𝑉𝑉𝑘𝑘𝑛𝑛0 = 𝑉𝑉𝑘𝑘𝑉𝑉0 = 0 (27)
Equation (27) will not be true for a general case. However, for the case of the machine being 
connected either in delta or ungrounded wye, the zero sequence line-to-neutral voltage can be 
assumed to be zero: 𝑉𝑉𝑘𝑘𝑛𝑛1 = 𝑡𝑡∗ � 𝑉𝑉𝑘𝑘𝑉𝑉1 (28)

𝑉𝑉𝑘𝑘𝑛𝑛2 = 𝑡𝑡∗ � 𝑉𝑉𝑘𝑘𝑉𝑉2 (29)

where 𝑡𝑡 =
1
3
� ∠30 (30)
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𝑉𝑉𝑘𝑘𝑛𝑛0 = 𝑉𝑉𝑘𝑘𝑉𝑉0 = 0 (27)

𝑉𝑉𝑘𝑘𝑛𝑛1 = 𝑡𝑡∗𝑉𝑉𝑘𝑘𝑉𝑉1 (28)

𝑉𝑉𝑘𝑘𝑛𝑛2 = 𝑡𝑡∗𝑉𝑉𝑘𝑘𝑉𝑉2 (29)

Equations (27) through (29) can be put into matrix form:

𝑉𝑉𝑘𝑘𝑛𝑛0
𝑉𝑉𝑘𝑘𝑛𝑛1
𝑉𝑉𝑘𝑘𝑛𝑛2

 =
1 1 1
0 𝑡𝑡∗ 0
0 0 𝑡𝑡

�
𝑉𝑉𝑘𝑘𝑉𝑉0
𝑉𝑉𝑘𝑘𝑉𝑉1
𝑉𝑉𝑘𝑘𝑉𝑉2

(31)

Equations (31) can be written as 
𝑉𝑉𝐼𝐼𝑉𝑉012  = 𝑇𝑇 � 𝑉𝑉𝐼𝐼𝐼𝐼012

(32)

Step 3: Compute the sequence line currents flowing into the machine:

𝐼𝐼𝑘𝑘0 = 0 (33)

𝐼𝐼𝑘𝑘1 =
𝑉𝑉𝑘𝑘𝑛𝑛1
𝑍𝑍𝑀𝑀1

(34)

𝐼𝐼𝑘𝑘2 =
𝑉𝑉𝑘𝑘𝑛𝑛2
𝑍𝑍𝑀𝑀2

(35)
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𝐼𝐼𝑎𝑎𝑏𝑏𝑐𝑐  = 𝑘𝑘 � 𝐼𝐼012
(37)

Step 4: Transform the sequence currents to phase currents:

𝐼𝐼𝑎𝑎
𝐼𝐼𝑏𝑏
𝐼𝐼𝑐𝑐

 =
1 1 1
1 𝑘𝑘2 𝑘𝑘
1 𝑘𝑘 𝑘𝑘2

�
𝐼𝐼0
𝐼𝐼1
𝐼𝐼2

(36)

Equation (36) can be written as

The four steps outlined earlier can be performed without actually computing the sequence 
voltages and currents. The procedure basically reverses the steps.

Define 𝑌𝑌𝑀𝑀𝑖𝑖 =
1
𝑍𝑍𝑀𝑀𝑖𝑖

(38)

The sequence currents are
𝐼𝐼0 = 0

(39)

𝐼𝐼1 = 𝑌𝑌𝑀𝑀1 � 𝑉𝑉𝑘𝑘𝑛𝑛1= 𝑌𝑌𝑀𝑀1 � 𝑡𝑡∗ � 𝑉𝑉𝑘𝑘𝑉𝑉1
(40)

(41)
𝐼𝐼2 = 𝑌𝑌𝑀𝑀2 � 𝑉𝑉𝑘𝑘𝑛𝑛2= 𝑌𝑌𝑀𝑀2 � 𝑡𝑡∗ � 𝑉𝑉𝑘𝑘𝑉𝑉2

Since I0 and Vab0 are both zero, the following relationship is true:
𝐼𝐼0 = 𝑉𝑉𝑘𝑘𝑉𝑉0 (42)
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𝐼𝐼0 = 0
(39)

𝐼𝐼1 = 𝑌𝑌𝑀𝑀1 � 𝑉𝑉𝑘𝑘𝑛𝑛1= 𝑌𝑌𝑀𝑀1 � 𝑡𝑡∗ � 𝑉𝑉𝑘𝑘𝑉𝑉1
(40)

𝐼𝐼0 = 𝑉𝑉𝑘𝑘𝑉𝑉0
(42)

Equations (39), (40), and (42) can be put into matrix form:
𝐼𝐼0
𝐼𝐼1
𝐼𝐼2

 =
1 0 0
0 𝑡𝑡∗ � 𝑌𝑌𝑀𝑀1 0
0 0 𝑡𝑡 � 𝑌𝑌𝑀𝑀1

�
𝑉𝑉𝑘𝑘𝑉𝑉0
𝑉𝑉𝑘𝑘𝑉𝑉1
𝑉𝑉𝑘𝑘𝑉𝑉2

(43)

Equation (43) can be written in shortened form as

𝐼𝐼012  = 𝑌𝑌𝑀𝑀012 � 𝑉𝑉𝐼𝐼𝐼𝐼012 (44)
From symmetrical component theory,

𝑉𝑉𝐼𝐼𝐼𝐼012  = 𝑘𝑘 −1 � 𝑉𝑉𝐼𝐼𝐼𝐼𝑎𝑎𝑏𝑏𝑐𝑐 (45)

𝐼𝐼𝑎𝑎𝑏𝑏𝑐𝑐  = 𝑘𝑘 � 𝐼𝐼012 (46)

Substitute Equation (45) into Equation (44) and substitute the resultant equation into Equation 
(46) to get

𝐼𝐼𝑎𝑎𝑏𝑏𝑐𝑐  = 𝑘𝑘 � 𝑌𝑌𝑀𝑀012 � 𝑘𝑘 −1� 𝑉𝑉𝐼𝐼𝐼𝐼𝑎𝑎𝑏𝑏𝑐𝑐 (47)
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𝑌𝑌𝑀𝑀𝑎𝑎𝑏𝑏𝑐𝑐  = 𝑘𝑘 � 𝑌𝑌𝑀𝑀012 � 𝑘𝑘 −1 (48)Define

Therefore 𝐼𝐼𝑎𝑎𝑏𝑏𝑐𝑐  = 𝑌𝑌𝑀𝑀𝑎𝑎𝑏𝑏𝑐𝑐 � 𝑉𝑉𝐼𝐼𝐼𝐼𝑎𝑎𝑏𝑏𝑐𝑐 (49)

The induction machine “phase frame admittance matrix” [YMabc] is defined in 
Equation (48). Equation (49) is used to compute the input phase currents of the 
machine from a knowledge of the phase line-to-line terminal voltages. This is the 
desired result. Recall that [YMabc] is a function of the slip of the machine so that a new 
matrix must be computed every time the slip changes.
Equation (49) can be used to solve for the line-to-line voltages as a function of the line 
currents by

𝑉𝑉𝐼𝐼𝐼𝐼𝑎𝑎𝑏𝑏𝑐𝑐  = 𝑍𝑍𝑀𝑀𝑎𝑎𝑏𝑏𝑐𝑐 � 𝐼𝐼𝑎𝑎𝑏𝑏𝑐𝑐 (50)
where

𝑍𝑍𝑀𝑀𝑎𝑎𝑏𝑏𝑐𝑐 = 𝑌𝑌𝑀𝑀𝑎𝑎𝑏𝑏𝑐𝑐
−1 (51)

As was done in Chapter 8, it is possible to replace the line-to-line voltages in Equation (50) 
with the “equivalent” line-to-neutral voltages:

𝑉𝑉𝐼𝐼𝑉𝑉𝑎𝑎𝑏𝑏𝑐𝑐  = 𝑊𝑊 � 𝑉𝑉𝐼𝐼𝐼𝐼𝑎𝑎𝑏𝑏𝑐𝑐 (52)
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(53)
Define

𝑊𝑊 = 𝑘𝑘 � 𝑇𝑇 � 𝑘𝑘 −1

The matrix [W] is a very useful matrix that allows the determination of the “equivalent” line-to-
neutral voltages from a knowledge of the line-to-line voltages. Equation (50) can be substituted 
into Equation (52) to define the “line-to-neutral” equation:

𝑉𝑉𝐼𝐼𝑉𝑉𝑎𝑎𝑏𝑏𝑐𝑐  = 𝑊𝑊 � 𝑍𝑍𝑀𝑀𝑎𝑎𝑏𝑏𝑐𝑐 � 𝐼𝐼𝑎𝑎𝑏𝑏𝑐𝑐 (54)
𝑉𝑉𝐼𝐼𝑉𝑉𝑎𝑎𝑏𝑏𝑐𝑐  = 𝑍𝑍𝐼𝐼𝑉𝑉𝑎𝑎𝑏𝑏𝑐𝑐 � 𝐼𝐼𝑎𝑎𝑏𝑏𝑐𝑐

where
𝑍𝑍𝐼𝐼𝑉𝑉𝑎𝑎𝑏𝑏𝑐𝑐 = 𝑊𝑊 � 𝑍𝑍𝑀𝑀𝑎𝑎𝑏𝑏𝑐𝑐 (55)

The inverse of Equation (54) can be taken to determine the line currents as a function of the 
line-to-neutral voltages:

𝐼𝐼𝑎𝑎𝑏𝑏𝑐𝑐  = 𝑌𝑌𝐼𝐼𝑉𝑉𝑎𝑎𝑏𝑏𝑐𝑐 � 𝑉𝑉𝐼𝐼𝑉𝑉𝑎𝑎𝑏𝑏𝑐𝑐 (56)

where 𝑌𝑌𝐼𝐼𝑉𝑉𝑎𝑎𝑏𝑏𝑐𝑐 = 𝑍𝑍𝐼𝐼𝑉𝑉𝑎𝑎𝑏𝑏𝑐𝑐 −1 (57)
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𝐼𝐼𝑎𝑎𝑏𝑏𝑐𝑐  = 𝑌𝑌𝐼𝐼𝑉𝑉𝑎𝑎𝑏𝑏𝑐𝑐 � 𝑉𝑉𝐼𝐼𝑉𝑉𝑎𝑎𝑏𝑏𝑐𝑐 (56)
𝑉𝑉𝐼𝐼𝑉𝑉𝑎𝑎𝑏𝑏𝑐𝑐  = 𝑊𝑊 � 𝑉𝑉𝐼𝐼𝐼𝐼𝑎𝑎𝑏𝑏𝑐𝑐 (52)

Care must be taken in applying Equation (56) to insure that the voltages used are the line-to-
neutral and not the line-to-ground voltages. If only the line-to-ground voltages are known, they 
must first be converted to the line-to-line values and then use Equation (52) to compute the line-
to-neutral voltages.

Once the machine terminal currents and line-to-neutral voltages are known, the input phase 
complex powers and total three-phase input complex power can be computed:

𝑆𝑆𝑎𝑎 = 𝑉𝑉𝑎𝑎𝑛𝑛 � 𝐼𝐼𝑎𝑎 ∗ (58)

𝑆𝑆𝑏𝑏 = 𝑉𝑉𝑏𝑏𝑛𝑛 � 𝐼𝐼𝑏𝑏 ∗ (59)

𝑆𝑆𝑐𝑐 = 𝑉𝑉𝑐𝑐𝑛𝑛 � 𝐼𝐼𝑐𝑐 ∗ (60)

𝑆𝑆𝑇𝑇𝑇𝑇𝑇𝑇𝑎𝑎𝑇𝑇 = 𝑆𝑆𝑎𝑎 + 𝑆𝑆𝑏𝑏 + 𝑆𝑆𝑐𝑐 (61)

Many times the only voltages known will be the magnitudes of the three line-to-line voltages at 
the machine terminals. When this is the case, the Law of Cosines must be used to compute the 
angles associated with the measured magnitudes.
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Once the terminal line-to-neutral voltages and currents are known, it is desired to 
analyze what is happening inside the machine. In particular, the stator and rotor losses 
are needed in addition to the “converted” shaft power. A method of performing the 
internal analysis can be developed in the phase frame by starting with the sequence 
networks. Fig.5 can be modified by removing RL, which represents the “load 
resistance” in the positive and negative sequence networks. The resulting networks 
will be modeled using A, B, C, and D parameters. The equivalent T circuit (RL 
removed) is shown in Fig.6. This circuit can represent both the positive and negative 
sequence networks. The only difference (if any) will be between the numerical values 
of the sequence stator and rotor impedances.
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Fig.6 Equivalent T circuit 

In Fig.6,
𝑌𝑌𝑋𝑋 =

1
𝑗𝑗𝑋𝑋𝑋𝑋

(62)

Define the sequence stator and rotor impedances:

𝑍𝑍𝑠𝑠𝑖𝑖 = 𝑅𝑅𝑠𝑠𝑖𝑖 + 𝑗𝑗𝑋𝑋𝑠𝑠𝑖𝑖 (63)

𝑍𝑍𝑘𝑘𝑖𝑖 = 𝑅𝑅𝑘𝑘𝑖𝑖 + 𝑗𝑗𝑋𝑋𝑘𝑘𝑖𝑖 (64)
The positive and negative sequence A, B, C, and D parameters of the unsymmetrical T circuit of 
Fig.6 are given by

𝑘𝑘𝑋𝑋𝑖𝑖 = 1 + 𝑌𝑌𝑋𝑋𝑖𝑖 � 𝑍𝑍𝑠𝑠𝑖𝑖 (65) 𝐵𝐵𝑋𝑋𝑖𝑖 = 𝑍𝑍𝑠𝑠𝑖𝑖 + 𝑍𝑍𝑘𝑘𝑖𝑖 + 𝑌𝑌𝑋𝑋𝑖𝑖 � 𝑍𝑍𝑠𝑠𝑖𝑖� 𝑍𝑍𝑘𝑘𝑖𝑖 (66)

𝐼𝐼𝑋𝑋𝑖𝑖 = 𝑌𝑌𝑋𝑋𝑖𝑖 (67) 𝐷𝐷𝑋𝑋𝑖𝑖 = 1 + 𝑌𝑌𝑋𝑋𝑖𝑖 � 𝑍𝑍𝑘𝑘𝑖𝑖 (68)
where
• i = 1 for positive sequence
• i = 2 for negative sequence
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Note 𝑘𝑘𝑋𝑋𝑖𝑖 � 𝐷𝐷𝑋𝑋𝑖𝑖 − 𝐵𝐵𝑋𝑋𝑖𝑖 � 𝐷𝐷𝑋𝑋𝑖𝑖 = 1 (69)

The terminal sequence line-to-neutral voltages and currents as functions of the rotor “load 
voltages” (Vr) and the rotor currents are given by

𝑉𝑉𝑠𝑠𝑖𝑖
𝐼𝐼𝑠𝑠𝑖𝑖

= 𝑘𝑘𝑋𝑋𝑖𝑖 𝐵𝐵𝑋𝑋𝑖𝑖
𝐼𝐼𝑋𝑋𝑖𝑖 𝐷𝐷𝑋𝑋𝑖𝑖

� 𝑉𝑉𝑘𝑘𝑖𝑖𝐼𝐼𝑘𝑘𝑖𝑖
(70)

Because of Equation (69), the inverse of Equation (70) is

𝑉𝑉𝑘𝑘𝑖𝑖
𝐼𝐼𝑘𝑘𝑖𝑖

= 𝐷𝐷𝑋𝑋𝑖𝑖 −𝐵𝐵𝑋𝑋𝑖𝑖
−𝐼𝐼𝑋𝑋𝑖𝑖 𝑘𝑘𝑋𝑋𝑖𝑖

� 𝑉𝑉𝑠𝑠𝑖𝑖𝐼𝐼𝑠𝑠𝑖𝑖
(71)

Equation (71) can be expanded to show the individual sequence voltages and currents:

0 0

1 1 1 1

2 1 2 2

0 0

1 1 1 1

2 2 2 2

0 0 0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0 0 0
0 0 0 0
0 0 0 0

Vr Vs
Vr Dm Bm Vs
Vr Dm Bm Vs
Ir Is
Ir Cm Am Is
Ir Cm Am Is

     
     −     
     −

=     
     
     −
     

−          



(72)
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0 0

1 1 1 1

2 1 2 2

0 0

1 1 1 1

2 2 2 2

0 0 0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0 0 0
0 0 0 0
0 0 0 0

Vr Vs
Vr Dm Bm Vs
Vr Dm Bm Vs
Ir Is
Ir Cm Am Is
Ir Cm Am Is

     
     −     
     −

=     
     
     −
     

−          

 (72)

Equation (72) can be partitioned between the third and fourth rows and columns. In reduced form 
by incorporating the partitioning, Equation (72) becomes

[𝑉𝑉𝑘𝑘012]
[𝐼𝐼𝑘𝑘012] = [𝐷𝐷𝑋𝑋012] [𝐵𝐵𝑋𝑋012]

[𝐼𝐼𝑋𝑋012] [𝑘𝑘𝑋𝑋012] � [𝑉𝑉𝑠𝑠012]
[𝐼𝐼𝑠𝑠012]

(73)

Expanding Equation (73),
𝑉𝑉𝑘𝑘012 = [𝐷𝐷𝑋𝑋012] � 𝑉𝑉𝑠𝑠012 + [𝐵𝐵𝑋𝑋012] �  [𝐼𝐼𝑠𝑠012] (74)

𝐼𝐼𝑘𝑘012 = [𝐼𝐼𝑋𝑋012] � 𝑉𝑉𝑠𝑠012 + [𝑘𝑘𝑋𝑋012] �  [𝐼𝐼𝑠𝑠012]
(75)

Equations (74) and (75) can be transformed into the phase domain:

𝑉𝑉𝑘𝑘𝑎𝑎𝑏𝑏𝑐𝑐 = [𝑘𝑘] � 𝑉𝑉𝑘𝑘012 = [𝑘𝑘] � [𝐷𝐷𝑋𝑋012] � 𝑘𝑘 −1� 𝑉𝑉𝑠𝑠𝑎𝑎𝑏𝑏𝑐𝑐 + [𝑘𝑘] � [𝐵𝐵𝑋𝑋012] � 𝑘𝑘 −1� 𝐼𝐼𝑠𝑠𝑎𝑎𝑏𝑏𝑐𝑐
(76)

𝐼𝐼𝑘𝑘𝑎𝑎𝑏𝑏𝑐𝑐 = [𝑘𝑘] � 𝐼𝐼𝑘𝑘012 = [𝑘𝑘] � [𝐼𝐼𝑋𝑋012] � 𝑘𝑘 −1� 𝑉𝑉𝑠𝑠𝑎𝑎𝑏𝑏𝑐𝑐 + [𝑘𝑘] � [𝑘𝑘𝑋𝑋012] � 𝑘𝑘 −1� 𝐼𝐼𝑠𝑠𝑎𝑎𝑏𝑏𝑐𝑐
(77)
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𝑉𝑉𝑘𝑘𝑎𝑎𝑏𝑏𝑐𝑐 = [𝑘𝑘] � 𝑉𝑉𝑘𝑘012 = [𝑘𝑘] � [𝐷𝐷𝑋𝑋012] � 𝑘𝑘 −1� 𝑉𝑉𝑠𝑠𝑎𝑎𝑏𝑏𝑐𝑐 + [𝑘𝑘] � [𝐵𝐵𝑋𝑋012] � 𝑘𝑘 −1� 𝐼𝐼𝑠𝑠𝑎𝑎𝑏𝑏𝑐𝑐 (76)
𝐼𝐼𝑘𝑘𝑎𝑎𝑏𝑏𝑐𝑐 = [𝑘𝑘] � 𝐼𝐼𝑘𝑘012 = [𝑘𝑘] � [𝐼𝐼𝑋𝑋012] � 𝑘𝑘 −1� 𝑉𝑉𝑠𝑠𝑎𝑎𝑏𝑏𝑐𝑐 + [𝑘𝑘] � [𝑘𝑘𝑋𝑋012] � 𝑘𝑘 −1� 𝐼𝐼𝑠𝑠𝑎𝑎𝑏𝑏𝑐𝑐 (77)

Therefore
𝑉𝑉𝑘𝑘𝑎𝑎𝑏𝑏𝑐𝑐 = [𝐷𝐷𝑋𝑋𝑎𝑎𝑏𝑏𝑐𝑐] � 𝑉𝑉𝑠𝑠𝑎𝑎𝑏𝑏𝑐𝑐 + [𝐵𝐵𝑋𝑋𝑎𝑎𝑏𝑏𝑐𝑐] � 𝐼𝐼𝑠𝑠𝑎𝑎𝑏𝑏𝑐𝑐 (78)
𝐼𝐼𝑘𝑘𝑎𝑎𝑏𝑏𝑐𝑐 = [𝐼𝐼𝑋𝑋𝑎𝑎𝑏𝑏𝑐𝑐] � 𝑉𝑉𝑠𝑠𝑎𝑎𝑏𝑏𝑐𝑐 + [𝑘𝑘𝑋𝑋𝑎𝑎𝑏𝑏𝑐𝑐] � 𝐼𝐼𝑠𝑠𝑎𝑎𝑏𝑏𝑐𝑐 (79)

where
𝑘𝑘𝑋𝑋𝑎𝑎𝑏𝑏𝑐𝑐 =  [𝑘𝑘] � [𝑘𝑘𝑋𝑋012] � 𝑘𝑘 −1

𝐵𝐵𝑋𝑋𝑎𝑎𝑏𝑏𝑐𝑐 =  [𝑘𝑘] � [𝐵𝐵𝑋𝑋012] � 𝑘𝑘 −1

𝐼𝐼𝑋𝑋𝑎𝑎𝑏𝑏𝑐𝑐 =  [𝑘𝑘] � [𝐼𝐼𝑋𝑋012] � 𝑘𝑘 −1

𝐷𝐷𝑋𝑋𝑎𝑎𝑏𝑏𝑐𝑐 =  [𝑘𝑘] � [𝐷𝐷𝑋𝑋012] � 𝑘𝑘 −1

(80)

The power converted to the shaft is given by

𝑃𝑃𝑐𝑐𝑇𝑇𝑛𝑛𝑐𝑐 = 𝑉𝑉𝑘𝑘𝑎𝑎 � 𝐼𝐼𝑘𝑘𝑎𝑎 ∗ + 𝑉𝑉𝑘𝑘𝑏𝑏 � 𝐼𝐼𝑘𝑘𝑏𝑏 ∗ + 𝑉𝑉𝑘𝑘𝑐𝑐 � 𝐼𝐼𝑘𝑘𝑐𝑐 ∗ (81)

The useful shaft power can be determined from a knowledge of the rotational (FW) losses:

𝑃𝑃𝑠𝑠𝑠𝑎𝑎𝑠𝑠𝑇𝑇 = 𝑃𝑃𝑐𝑐𝑇𝑇𝑛𝑛𝑐𝑐 − 𝑃𝑃𝐹𝐹𝐹𝐹 (82)
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𝑃𝑃𝑟𝑟𝑇𝑇𝑇𝑇𝑇𝑇𝑟𝑟 = 𝐼𝐼𝑘𝑘𝑎𝑎 2 � 𝑅𝑅𝑘𝑘 + 𝐼𝐼𝑘𝑘𝑏𝑏 2 � 𝑅𝑅𝑘𝑘 + 𝐼𝐼𝑘𝑘𝑐𝑐 2 � 𝑅𝑅𝑘𝑘 (83)

The rotor “copper” losses are

The stator “copper” losses are

𝑃𝑃𝑠𝑠𝑇𝑇𝑎𝑎𝑇𝑇𝑇𝑇𝑟𝑟 = 𝐼𝐼𝑠𝑠𝑎𝑎 2 � 𝑅𝑅𝑠𝑠 + 𝐼𝐼𝑠𝑠𝑏𝑏 2 � 𝑅𝑅𝑠𝑠 + 𝐼𝐼𝑠𝑠𝑐𝑐 2 � 𝑅𝑅𝑠𝑠 (84)

The total input power is

𝑃𝑃𝑖𝑖𝑛𝑛 = 𝑅𝑅𝑅𝑅[𝑉𝑉𝑠𝑠𝑎𝑎 � 𝐼𝐼𝑠𝑠𝑎𝑎 ∗ + 𝑉𝑉𝑠𝑠𝑏𝑏 � 𝐼𝐼𝑠𝑠𝑏𝑏 ∗ + 𝑉𝑉𝑠𝑠𝑐𝑐 � 𝐼𝐼𝑠𝑠𝑐𝑐 ∗] (85)
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To demonstrate the analysis of an induction motor in the phase frame, the following 
induction motor will be used:
• 25 hp, 240 V operating with slip = 0.035
• Plossrotation = 0.75 kW
• Zs = 0.0774 + j0.1843 Ω
• Zm = 0 + j4.8384 Ω
• Zr = 0.0908 + j0.1843 Ω
The “load” resistances are

𝑅𝑅𝐼𝐼1 =
1 − 0.035

0.035
� 0.098 = 2.5029 Ω

𝑅𝑅𝐼𝐼2 =
1 − (1.965)

1.965
� 0.0908 = −0.0446 Ω

The input sequence impedances are

𝑍𝑍𝑀𝑀1 = 𝑍𝑍𝑠𝑠 +
𝑍𝑍𝑋𝑋 � (𝑍𝑍𝑘𝑘 + 𝑅𝑅𝐼𝐼1)
𝑍𝑍𝑋𝑋 + 𝑍𝑍𝑘𝑘 + 𝑅𝑅𝐼𝐼1

= 1.9775 + 𝑗𝑗𝑗.3431 Ω

𝑍𝑍𝑀𝑀2 = 𝑍𝑍𝑠𝑠 +
𝑍𝑍𝑋𝑋 � (𝑍𝑍𝑘𝑘 + 𝑅𝑅𝐼𝐼2)
𝑍𝑍𝑋𝑋 + 𝑍𝑍𝑘𝑘 + 𝑅𝑅𝐼𝐼2

= 0.1203 + 𝑗𝑗𝑗.3623 Ω
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The positive and negative sequence input admittances are

𝑌𝑌𝑀𝑀1 =
1

𝑍𝑍𝑀𝑀1
= 0.3461 − 𝑗𝑗𝑗.2350 𝑆𝑆

𝑌𝑌𝑀𝑀2 =
1

𝑍𝑍𝑀𝑀2
= 0.8255 − 𝑗𝑗2.4863 𝑆𝑆

The sequence admittance matrix is

𝑌𝑌𝑀𝑀012 =
1 0 0
0 0.3461 − 𝑗𝑗𝑗.2350 0
0 0 0.8255 − 𝑗𝑗2.4863

 𝑆𝑆

Applying Equation (48), the phase admittance matrix is

𝑌𝑌𝑀𝑀𝑎𝑎𝑏𝑏𝑐𝑐 =
0.7452 − 𝑗𝑗𝑗.4074 −0.0999 − 𝑗𝑗𝑗.0923 0.3547 + 𝑗𝑗𝑗.4997
0.3547 + 𝑗𝑗𝑗.4997 0.7452 − 𝑗𝑗𝑗.4074 −0.0999 − 𝑗𝑗𝑗.0923
−0.0999 − 𝑗𝑗𝑗.0923 0.3547 + 𝑗𝑗𝑗.4997 0.7452 − 𝑗𝑗𝑗.4074

 𝑆𝑆

The line-to-line terminal voltages are measured to be
𝑉𝑉𝑎𝑎𝑏𝑏 = 235 𝑉𝑉,𝑉𝑉𝑏𝑏𝑐𝑐 = 240 𝑉𝑉, 𝑉𝑉𝑐𝑐𝑎𝑎 = 245 𝑉𝑉

ECpE Department



Example 2

44

Since the sum of the line-to-line voltages must equal zero, the law of cosines can be 
used to determine the angles on the voltages. Applying the law of cosines results in

𝑉𝑉𝐼𝐼𝐼𝐼𝑎𝑎𝑏𝑏𝑐𝑐 =
235∠0

240∠ − 117.9
245∠120.0

 𝑉𝑉

The phase motor currents can now be computed:

𝐼𝐼𝑠𝑠𝑎𝑎𝑏𝑏𝑐𝑐 = 𝑌𝑌𝑀𝑀𝑎𝑎𝑏𝑏𝑐𝑐 � 𝑉𝑉𝐼𝐼𝐼𝐼𝑎𝑎𝑏𝑏𝑐𝑐 =
53.15∠ − 71.0

55.15∠ − 175.1
66.6∠55.6

 𝑘𝑘

It is obvious that the currents are very unbalanced. The measure of unbalance for the 
voltages and currents can be computed as [1]

[1] American National Standard for Electric Power Systems and Equipment–Voltage Ratings (60 Hertz), ANSI C84.1-1995, National Electrical 
Manufacturers Association, Rosslyn, VA, 1996.

𝑉𝑉𝑢𝑢𝑛𝑛𝑏𝑏𝑎𝑎𝑇𝑇𝑎𝑎𝑛𝑛𝑐𝑐𝑢𝑢 =
max _𝑑𝑑𝑅𝑅𝑘𝑘𝑑𝑑𝑘𝑘𝑡𝑡𝑑𝑑𝑑𝑑𝑛𝑛

𝑉𝑉𝑎𝑎𝑐𝑐𝑎𝑎
� 100 =

5
240

� 100 = 2.08%

𝐼𝐼𝑢𝑢𝑛𝑛𝑏𝑏𝑎𝑎𝑇𝑇𝑎𝑎𝑛𝑛𝑐𝑐𝑢𝑢 =
max _𝑑𝑑𝑅𝑅𝑘𝑘𝑑𝑑𝑘𝑘𝑡𝑡𝑑𝑑𝑑𝑑𝑛𝑛

𝐼𝐼𝑎𝑎𝑐𝑐𝑎𝑎
� 100 =

8.3232
58.31

� 100 = 14.27%

ECpE Department



Example 2

45
[2] Kersting, W.H. and Phillips, W.H., Phase frame analysis of the effects of voltage unbalance on induction machines, IEEE Transactions on 
Industry Applications, 33, 415–420, 1997.

This example demonstrates that the current unbalance is approximately seven times 
greater than the voltage unbalance. This ratio of current unbalance to voltage 
unbalance is typical. The actual operating characteristics including stator and rotor 
losses of the motor can be determined using the method developed in Ref. [2]

The equivalent line-to-neutral voltages at the motor are computed using the [W] 
matrix:

𝑉𝑉𝑠𝑠𝑎𝑎𝑏𝑏𝑐𝑐 = 𝑊𝑊 � 𝑉𝑉𝐼𝐼𝐼𝐼𝑎𝑎𝑏𝑏𝑐𝑐
𝑉𝑉𝑎𝑎𝑛𝑛
𝑉𝑉𝑏𝑏𝑛𝑛
𝑉𝑉𝑐𝑐𝑛𝑛

 = 1
3
�

2 1 0
0 2 1
1 0 2

�
235.0∠𝑗

240∠ − 117.9
245∠120.0

=
138.6∠ − 30.7

135.7∠ − 148.6
141.4∠91.4

The input complex power to the motor is

𝑆𝑆𝑖𝑖𝑛𝑛 = �
𝑘𝑘=1

3
𝑉𝑉𝑠𝑠𝑎𝑎𝑏𝑏𝑐𝑐𝑘𝑘 � 𝐼𝐼𝑎𝑎𝑏𝑏𝑐𝑐𝑘𝑘

1000
= 19.95 + 𝑗𝑗𝑗𝑗.62

𝑆𝑆𝑖𝑖𝑛𝑛 = 24.15 𝑃𝑃𝑃𝑃 = 0.83 𝑙𝑙𝑘𝑘𝑙𝑙𝑙𝑙𝑑𝑑𝑛𝑛𝑙𝑙
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The rotor currents and voltages can be computed by first computing the equivalent A, B, C, and 
D matrices according to Equations (80). The first step is to compute the sequence A, B, C, and 
D parameters according to Equations (65) through (68):

𝑘𝑘𝑋𝑋𝑖𝑖 = 1 + 𝑌𝑌𝑋𝑋𝑖𝑖 � 𝑍𝑍𝑠𝑠𝑖𝑖= 1.0381 − 𝑗𝑗𝑗.0161
𝐵𝐵𝑋𝑋𝑖𝑖 = 𝑍𝑍𝑠𝑠𝑖𝑖 + 𝑍𝑍𝑘𝑘𝑖𝑖 + 𝑌𝑌𝑋𝑋𝑖𝑖 � 𝑍𝑍𝑠𝑠𝑖𝑖� 𝑍𝑍𝑘𝑘𝑖𝑖= 0.1746 + 𝑗𝑗𝑗.3742

𝐼𝐼𝑋𝑋𝑖𝑖 = 𝑌𝑌𝑋𝑋𝑖𝑖 = −𝑗𝑗𝑗.2067 𝐷𝐷𝑋𝑋𝑖𝑖 = 1 + 𝑌𝑌𝑋𝑋𝑖𝑖 � 𝑍𝑍𝑘𝑘𝑖𝑖= 1.0381 − 𝑗𝑗𝑗.0188

The sequence matrices using Equations (72) are

𝑘𝑘𝑋𝑋012 =
0 0 0
0 1.0381 − 𝑗𝑗𝑗.0161 0
0 0 1.0381 − 𝑗𝑗𝑗.0161

𝐵𝐵𝑋𝑋012 =
0 0 0
0 −0.1746 − 𝑗𝑗𝑗.3742 0
0 0 −0.1746 − 𝑗𝑗𝑗.3742

𝐼𝐼𝑋𝑋012 =
0 0 0
0 𝑗𝑗𝑗.2067 0
0 0 𝑗𝑗𝑗.2067 

𝐵𝐵𝑋𝑋012 =
0 0 0
0 1.0381 − 𝑗𝑗𝑗.0188 0
0 0 1.0381 − 𝑗𝑗𝑗.0188
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Equation (80) gives us the final phase domain A, B, C, and D matrices:

𝑘𝑘𝑋𝑋𝑎𝑎𝑏𝑏𝑐𝑐 =  [𝑘𝑘] � [𝑘𝑘𝑋𝑋012] � 𝑘𝑘 −1=
0.6921 − 𝑗𝑗0.0107 −0.346 + 𝑗𝑗𝑗.0053 −0.346 + 𝑗𝑗𝑗.0053
−0.346 + 𝑗𝑗𝑗.0053 0.6921 − 𝑗𝑗𝑗.0107 −0.346 + 𝑗𝑗𝑗.0053
−0.346 + 𝑗𝑗𝑗.0053 −0.346 + 𝑗𝑗𝑗.0053 0.6921 − 𝑗𝑗𝑗.0107

𝐵𝐵𝑋𝑋𝑎𝑎𝑏𝑏𝑐𝑐 =  [𝑘𝑘] � [𝐵𝐵𝑋𝑋012] � 𝑘𝑘 −1=
−0.1164 − 𝑗𝑗0.2494 0.0582 + 𝑗𝑗𝑗.1247 0.0582 + 𝑗𝑗𝑗.1247
0.0582 + 𝑗𝑗𝑗.1247 −0.1164 − 𝑗𝑗𝑗.2494 0.0582 + 𝑗𝑗𝑗.1247
0.0582 + 𝑗𝑗𝑗.1247 0.0582 + 𝑗𝑗𝑗.1247 −0.1164 − 𝑗𝑗𝑗.2494

𝐼𝐼𝑋𝑋𝑎𝑎𝑏𝑏𝑐𝑐 =  [𝑘𝑘] � [𝐼𝐼𝑋𝑋012] � 𝑘𝑘 −1=
𝑗𝑗0.1378 −𝑗𝑗𝑗.0689 −𝑗𝑗𝑗.0689
−𝑗𝑗𝑗.0689 𝑗𝑗𝑗.1378 −𝑗𝑗𝑗.0689
−𝑗𝑗𝑗.0689 −𝑗𝑗𝑗.0689 𝑗𝑗𝑗.1378

𝐷𝐷𝑋𝑋𝑎𝑎𝑏𝑏𝑐𝑐 =  [𝑘𝑘] � [𝐷𝐷𝑋𝑋012] � 𝑘𝑘 −1=
0.6921 − 𝑗𝑗0.0125 −0.346 + 𝑗𝑗𝑗.0063 −0.346 + 𝑗𝑗𝑗.0063
−0.346 + 𝑗𝑗𝑗.0063 0.6921 − 𝑗𝑗𝑗.0125 −0.346 + 𝑗𝑗𝑗.0063
−0.346 + 𝑗𝑗𝑗.0063 −0.346 + 𝑗𝑗𝑗.0063 0.6921 − 𝑗𝑗𝑗.0125
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With the matrices defined, the rotor voltages and currents can be computed:

𝑉𝑉𝑘𝑘𝑎𝑎𝑏𝑏𝑐𝑐 = [𝐷𝐷𝑋𝑋𝑎𝑎𝑏𝑏𝑐𝑐] � 𝑉𝑉𝑠𝑠𝑎𝑎𝑏𝑏𝑐𝑐 + 𝐵𝐵𝑋𝑋𝑎𝑎𝑏𝑏𝑐𝑐 � 𝐼𝐼𝑠𝑠𝑎𝑎𝑏𝑏𝑐𝑐 =
124.5∠ − 36.1

124.1∠ − 156.3
123.8∠83.9

𝐼𝐼𝑘𝑘𝑎𝑎𝑏𝑏𝑐𝑐 = [𝐼𝐼𝑋𝑋𝑎𝑎𝑏𝑏𝑐𝑐] � 𝑉𝑉𝑠𝑠𝑎𝑎𝑏𝑏𝑐𝑐 + [𝑘𝑘𝑋𝑋𝑎𝑎𝑏𝑏𝑐𝑐] � 𝐼𝐼𝑠𝑠𝑎𝑎𝑏𝑏𝑐𝑐 =
42.2∠ − 41.2

50.9∠ − 146.6
56.8∠79.1The converted electric power to shaft power is

𝑃𝑃𝑐𝑐𝑇𝑇𝑛𝑛𝑐𝑐𝑢𝑢𝑟𝑟𝑇𝑇 = �
𝑘𝑘=1

3 𝑉𝑉𝑠𝑠𝑎𝑎𝑏𝑏𝑐𝑐𝑘𝑘 � 𝐼𝐼𝑎𝑎𝑏𝑏𝑐𝑐𝑘𝑘
∗

1000
= 18.5 𝑘𝑘𝑊𝑊

The power converted in units of horsepower is

ℎ𝑝𝑝 =
𝑃𝑃𝑐𝑐𝑇𝑇𝑛𝑛𝑐𝑐𝑢𝑢𝑟𝑟𝑇𝑇

0.746
= 24.8

Note how the shaft power in horsepower is approximately equal to the input kVA of 
the motor. This is typically the case so that a good assumption for a motor is that the 
rated output in horsepower will be equal to the input kVA.
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Thank You!
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